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Abstract. Studies of the interference effect in the mixed-type forbidden line 461.5 nm are reported. A
special computer program considering the M1-E2 interference was designed to obtain the predicted con-
tour of the Zeeman structure of the line. By variation of free parameters, describing the line shape and
the electric-quadrupole admixture, the calculated profiles were fitted into the recorded spectra. The E2
admixture found is (7.4 ± 0.4)%. Our result is compared with recent theories and other experiments.

PACS. 32.10.Fn Fine and hyperfine structure – 32.60.+i Zeeman and Stark effects – 32.70.Fw Absolute
and relative intensities – 31.15.Ct Semi-empirical and empirical calculations (differential overlap, Hückel,
PPP methods, etc.)

1 Introduction

The 6s26p3 ground configuration of bismuth gives rise to
five levels 4S3/2, 2P3/2,1/2 and 2D5/2,3/2. Since electric-
dipole (E1) transitions between the states of the same
parity are forbidden, all the levels of the 6s26p3 config-
uration are metastable. Weak magnetic-dipole (M1) and
electric-quadrupole (E2) transitions between these levels
are permitted in the second-order radiation theory.

For strong transitions, the recently calculated theo-
retical decay rates are in reasonable agreement with ex-
periment, but in the case of weak forbidden transitions
the predictions often disagree with the experimental data.
This results from the fact that weak transition rates are
particularly sensitive to even small modifications to the
wave functions, and a careful choice of the theoretical
method is required.

For the Bi I spectrum, neither LS nor jj coupling is
adequate. The intermediate coupling in the fine structure
of 6s26p3 configuration in single configuration approxima-
tion has been studied by several authors [1–3]. A complete
list of M1 and E2 transition probabilities in 6s26p3 con-
figuration of Bi I has been published in [3].

The most extensive multiconfiguration calculations of
multipole transition rates for states within 6s26p3 con-
figuration of bismuth have been performed by Biémont
and Quinet [4], by the use of the HFR method. The en-
ergies obtained in HFR calculations appear to be in very
good agreement with the experiment, but the agreement
with the experimental data concerning multipole transi-
tion rates is not that satisfactory. For instance, the exper-
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Table 1. Experimental and theoretical results for E2 admix-
ture in mixed M1+E2 transitions in Bi I.

Transition λ(nm) E2 admixture (%)

Experiment HFR theoryd

2P3/2 → 2D3/2 459.7 2.5 ± 0.5a 3.3
2P1/2 → 4S3/2 461.5 6.5 ± 0.5a 23
2P3/2 → 2D5/2 564.0 28 ± 3b 34
2D5/2 → 4S3/2 647.6 16 ± 1a 35

17 ± 1c

2D3/2 → 4S3/2 875.5 2.25 ± 0.5b 1.3

1 ± 1c

a Reference [6], b reference [7], c reference [8], d reference [4].

imental transition probability A(2D3/2−4S3/2) = 22.5 ±
1.4 s−1 [5] is almost 50% lower than the theoretical result.
Furthermore, there is also a large discrepancy between
the measured and calculated admixtures of E2 radiation
in mixed transitions (see Tab. 1).

In a theoretical study of forbidden lines Miliańczuk [9],
Gerjuoy [10] and Shortley et al. [11] considered the tran-
sitions allowed for both magnetic-dipole and electric-
quadrupole types of radiation. They pointed out that the
intensity of Zeeman patterns of mixed multipole lines is
not a simple sum of two contributions for M1 and E2 ra-
diations taken in proportion to their transition probabili-
ties, but should be modified by an interference term. This
interference effect was for the first time ever observed ex-
perimentally by Jenkins and Mrozowski [12], for the line
733.2 nm of lead (lead in natural composition of isotopes
was used). This line was reinvestigated using the even
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isotope of lead [13]. The M1-E2 interference was also found
for transitions with hyperfine structure i.e. for two lines
461.5 nm [14,15] and 647.6 nm [16] of bismuth. Similar ob-
servations have been made for the Te I line using Fourier
transform spectroscopy [17]. The M1-E2 interference in Bi
I lines has also been observed in absorption by means of
the Faraday effect [8].

Dembinski et al. [15] derived detailed formulae for
the radiation intensity of Zeeman components for mixed
M1+E2 forbidden lines. It follows from these studies that
the intensity of ∆M = ±1 Zeeman components changes
when observation is changed from transversal to longitudi-
nal direction. This is due to the contribution from the in-
terference between M1 and E2 radiations that are emitted
with varying phases in different directions. A similar inter-
ference effect occurs between magnetic-quadrupole (M2)
and electric-dipole (E1) radiations. Mixed forbidden tran-
sitions permitted simultaneously for both M2, and E1 en-
forced by the nuclear spin radiations, were theoretically
predicted by Garstang [18] and Mizushima [19] for two-
electron atoms with nuclear magnetic moment I �= 0.

The M1-E2 interference effect in emission spectra pro-
duces the difference between the intensities of ∆M = ±1
Zeeman patterns observed in longitudinal and transverse
directions. This phenomenon was used in a series of experi-
ments for precise determination of the electric-quadrupole
admixture in forbidden lines. At the beginning of these
studies, the intensities of certain groups of Zeeman pat-
terns taken from the spectra obtained in longitudinal and
transverse directions of observations (for σ and π polar-
izations), using photographic-photometry, were compared
with calculations for varying E2 admixture. The mag-
netic field and Fabry-Perot spacers were selected in such a
way that no overlap of different groups of Zeeman compo-
nents was present [15,16,20]. Later, the time consuming
photographic-photometry with all its uncertainties was re-
placed by a simple visual comparison, to find the best
match between the experimental microphotometer trace
and a series of calculated profiles for varying E2 admix-
ture [6,7,21].

Currently, the development of the computer technique
allows us to analyze fully the information contained in the
recorded spectra. Since past attempts to estimate the E2
admixture in the 461.5 nm line gave results strongly differ-
ent from the recent theory (see Tab. 1 and Refs. [6,14,15]),
it seemed interesting to reexamine this line with the aid of
our computer technique by using the previously obtained
experimental data (photographic plates) [14].

2 Experiment

A standard experimental arrangement for observation of
the Zeeman effect of forbidden lines described in detail
in [14] was used. In brief, electrodeless discharge tube pow-
ered by an rf generator (100 MHz) was the source of for-
bidden lines. The high resolution spectral apparatus con-
sisted of a silver-coated Fabry-Perot étalon (with 1.19 mm
spacer) and a Hilger-Engris grating spectrograph. The

light source was placed in the 20.4 cm gap of a Harvey-
Wells magnet (30.5 cm diameter) producing a field up to
7 kG. The magnetic field was measured with an accuracy
of 2% by the use of a gaussmeter. A Glan prism was used
to separate the σ and π Zeeman components in the per-
pendicular view.

The spectra were recorded on Kodak 103a-O and 103a-
F photographic plates. The exposure time was selected so
as to keep the blackening of the photographic plates in a
linear range. In addition, we analyzed all the available in-
terferometric orders, to be sure that overexposure of films
(in our case less prominent higher orders) does not play
any role in the analysis of the spectra.

The spectra were converted into a digital form with
a Carl Zeiss MD 100 microdensitometer. The plate with
the recorded interferometric picture of the length of about
1 cm was shifted by a microdensitometer, step by step,
with very small speed (∼0.02 mm/s). The precision of
each step could be adjusted within a range of 0.001 mm.
All the time the plate was illuminated from the bottom by
white light focused by an arrangement of lenses. The im-
age was projected with severalfold enlargement on a screen
and observed through a slit (0.05× 5 mm) by a photocell
recording photocurrent proportional to the transmittance
of the plate. The analog output of the microdensitome-
ter was connected to the analog-to-digital converter card
installed in the PC computer.

3 Theory

The general theory of the M1-E2 interference effect is scat-
tered over various papers [9,10,15,22] and monographs
(e.g. [23]).

Let |a〉 and |b〉 be two atomic states. The spontaneous
transition probability Aab for a single photon emission
with polarization −→e and momentum

−→
k = (ω/c)−→n (−→n

is unit propagation vector) is given by [24]

Aab = |〈b|̂U(
−→
k ,−→e )|a〉|2, (1)

where an interaction energy operator ̂U(
−→
k ,−→e ) expanded

into multipole moments becomes

̂U(
−→
k ,−→e ) =

∑

J,q

(−→e ∗ · −→Y (0)
Jq (−→n )

)

û
(0)
Jq (

−→
k ,−→e )

+
∑

J,q

(−→e ∗ · −→Y (1)
Jq (−→n )

)

û
(1)
Jq (

−→
k ,−→e ). (2)

The spherical vector
−→
Y

(λ)
Jq characterizes a photon with an-

gular momentum J , its ẑ component q and parity P =
(−1)J+λ+1, where λ may assume values 1 or 0 for electric
or magnetic multipoles respectively. In expression (2) the
transversality condition −→n · −→e = 0 was imposed.

In the non-relativistic limit, general forms of matrix
elements of operators for electric and magnetic multipole
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transitions, in Gauss gauge, are given by:

〈b|û(1)
Jq (

−→
k ,−→e )|a〉 = N(ω, J)〈b| ̂Q(1)

Jq |a〉 (3)

̂Q
(1)
Jq = eaJ

0C
(J)
q (−→n ) (4)

and

〈b|û(0)
Jq (

−→
k ,−→e )|a〉 = iN(ω, J)〈b|µ̂(0)

Jq |a〉 (5)

µ̂
(0)
Jq =

2µB

J + 1
∇(C(J)

q (−→n ))(
−→
L + (J + 1)

−→
S ),

(6)

where C(J)
q (−→n ) =

√

4π/(2J + 1)Y ∗
Jq(

−→n ) are Racah ten-
sors, a0 is Bohr radius and µB is Bohr magneton. In equa-
tions (3) and (5), N(ω, J) denotes

N(ω, J) = (−i)J

√

2
�

√

J + 1
J

√
2J + 1

(2J + 1)!!

(ω

c

)J+1/2

. (7)

Let us limit our attention to the M1 and E2 contributions.
Then substituting (2) into (1) yields

aTotal
ab (M →M ′) =

1
∑

q=−1

|(−→e ∗ · −→Y (0)
1q (−→n ))|2aM1

ab (q)

+
2

∑

q=−2

|(−→e ∗ · −→Y (1)
2q (−→n ))|2aE2

ab (q)

+ 2Re

{

1
∑

q=−1

(

(−→e · −→Y ∗(0)
1q (−→n ))(−→e ∗ · −→Y (1)

2q (−→n ))
)

× 〈b|û∗(0)1q (
−→
k ,−→e )|a〉〈b|û(1)

2q (
−→
k ,−→e )|a〉

}

. (8)

Expression (8) shows that different magnetic and electric
multipoles interfere. Therefore the transition probability
for mixed transitions is not a simple sum of independent
terms describing well-known pure multipole radiation of
electric and magnetic type:

aM1
ab (q) = |〈b|û(0)

1q (
−→
k ,−→e )|a〉|2 =

4
3�

(ω

c

)3 ∣

∣

∣〈b|µ̂(0)
1q |a〉

∣

∣

∣

2

(9)

aE2
ab (q) = |〈b|û(1)

2q (
−→
k ,−→e )|a〉|2 =

1
15�

(ω

c

)5∣
∣

∣〈b| ̂Q(1)
2q |a〉

∣

∣

∣

2

.

(10)

However, the cross term vanishes after integration over
photon polarizations and directions of observation. Then
the interference can be observed only when various com-
ponents of the atomic line (corresponding to different M’,
M) are separated with respect to wavelength by means of
the magnetic field.

Let us calculate the scalar product −→e ∗ · −→Y (λ)
Jq (−→n ) con-

necting the states of polarization of the emitted radiation
with the selection rules for q. Vectors

−→
Y

(λ)
Jq (−→n ) are related

to the vector spherical harmonics as follows
−→
Y

(0)
Jq (−→n ) =

−→
Y JJq(−→n ) (11)

−→
Y

(1)
Jq (−→n ) = −i−→n ×−→

Y
(0)
Jq (−→n ) (12)

and by definition

−→
Y JlM (−→n ) =

∑

mq

Ylm(−→n )−→e q(lm1q|l1JM). (13)

In (13), (lm1q|l1JM) are Clebsch-Gordan coefficients and
eq denote the irreducible tensor components of the polar-
ization vector [25].

The factors −→e ∗ ·−→Y (λ)
Jq (−→n ) can then be written in terms

of irreducible tensor components of −→n , −→e and −→n × −→e
vectors, to obtain

(−→e ∗ · −→Y (0)
10 (−→n )

)

=
i

4

√

6
π

(−→n ×−→e )0

(−→e ∗ · −→Y (0)
1±1(

−→n )
)

=
i

4

√

6
π

(−→n ×−→e )±1 (14)

for magnetic-dipole, and

(−→e ∗ · −→Y (1)
20 (−→n )

)

=
1
2

√

15
2π
n0e0

(−→e ∗ · −→Y (1)
2±1(

−→n )
)

=
1
2

√

5
2π

(n0e±1 + n±1e0)

(−→e ∗ · −→Y (1)
2±2(

−→n )
)

=
1
2

√

5
π
n±1e±1 (15)

for electric-quadrupole contributions, respectively. Equa-
tions (14) and (15) express the angular distribution of
multipole radiation in any direction holding the relation
between directions of polarization and propagation of the
photon.

Let us assume that |a〉 and |b〉 are eigenstates of the
ẑ components of the angular momentum and are labelled
by the set of quantum numbers (γJIFMF ). The magnetic
field is directed along the ẑ axis and the unit vectors −→e
and −→n are determined by:

−→n = ŷ sin θ + ẑ cos θ (16)
−→e = ε2x̂+ ε1(ẑ sin θ − ŷ cos θ), (17)

where θ is the angle between the direction of the magnetic
field and the direction of observation, and parameters ε1,
ε2 are introduced in order to distinguish the contributions
due to the two mutually orthogonal directions of polariza-
tion.

Let us assume that ε1 = cosα and ε2 = exp(iβ) sinα.
Then, the set (α = π/4, β = ±π/2) corresponds to the
observation of circular polarized radiation, arbitrary α and
β are adequate to the elliptically polarized light, whereas
β = 0 corresponds to the radiation polarized linearly at
the angle α to the zy-plane (see Fig. 1).
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Fig. 1. The system
of two mutually or-
thogonal unit vectors
n̂ and ê determining
the direction of prop-
agation and polariza-
tion of the emitted
photon respectively.

With this convention, the coefficients b(λ)
Jq =

√
16π(−→e ∗·

−→
Y

(λ)
Jq (−→n )) become

b
(0)
10 = −i√6

[

ε2

]
√

1 − x2

b
(0)
1±1 = ∓i

√
3
[

ε1 ± iε2x
]

b
(1)
20 =

√
30

[

ε1

]

x
√

1 − x2

b
(1)
2±1 = i

√
5
[

ε1(2x2 − 1) ± iε2x
]

b
(1)
2±2 =

√
5
[

ε1x+ iε2

]
√

1 − x2. (18)

Similarly, the products b∗(λ)
Jq b

(λ′)
J′q can be written as

|b(0)10 |2 = 6
[

|ε2|2
]

(1 − x2)

|b(0)1±1|2 = 3
[

|ε1|2 + |ε2|2x2 ± i(ε∗1ε2 − ε∗2ε1)x
]

|b(1)20 |2 = 30
[

|ε1|2
]

(1 − x2)x2

|b(1)2±1|2 = 5
[

|ε1|2(2x2 − 1)2 + |ε2|2x2

± i(ε∗1ε2 − ε∗2ε1)(2x
2 − 1)x

]

|b(1)2±2|2 = 5(1 − x2)
[

|ε1|2x2 + |ε2|2

± i(ε∗1ε2 − ε∗2ε1)x
]

b
∗(0)
1±1b

(1)
2±1 = ∓

√
15

[

|ε1|2(2x2 − 1) + |ε2|2x2

± ix(ε∗1ε2 − ε∗2ε1(2x
2 − 1))

]

, (19)

where x = cos θ (x = 0 for transverse and x = 1 for
longitudinal directions of observation, respectively).

For all the contributions to the total transition prob-
ability, expressions (19) connect the states of polarization
of the emitted light with the selection rules for ∆M as
shown in Table 2. The states of polarization presented in
the table correspond to the maxima of the absolute values
of b∗(λ)

Jq b
(λ′)
J′q . Numerical values of products b∗(λ)

Jq b
(λ′)
J′q are

summarized in Table 3.
In the absence of the magnetic field the atomic states

are obtained by diagonalization of the hyperfine structure

Table 2. Polarization rules for Zeeman components.

Longitudinal observation Transverse observation

∆M M1 E2 M1-E2 M1 E2 M1-E2

2 – – – – σ –

right right right
1 π π π

circular circular circular

0 – – – σ – –

left left left
–1 π π π

circular circular circular

–2 – – – – σ –

Table 3. Numerical values of products b
∗(λ)
Jq (θ)b

(λ′)
J′q (θ).

Longitudinal observation Transverse observation

q |b(0)
1q |2 |b(1)

2q |2 (b
∗(0)
1q b

(1)
2q ) |b(0)

1q |2 |b(1)
2q |2 (b

∗(0)
1q b

(1)
2q )

2 – – – – 5 –

1 3 5 −√
15 3 5 +

√
15

0 – – – 6 – –

−1 3 5 +
√

15 3 5 −√
15

−2 – – – – 5 –

Hamiltonian and are labelled by the set of quantum num-
bers (γ, J, I, F ). In the presence of the field, the atomic
eigenstates can be expressed as linear combinations of the
form:

|ψMF 〉 =
∑

F

Cγ
MF F |γ, J, I, F,MF 〉. (20)

The Cγ
MF F coefficients can be obtained by diagonalization

of the Hamiltonian matrix with matrix elements given by

HF ′M,FM =

δF ′F

⎛

⎜

⎜

⎝

A
C

2
+
B

8

3
4
C(C + 1) − I(I + 1)J(J + 1)

I

(

I − 1
2

)

J

(

J − 1
2

)

⎞

⎟

⎟

⎠

+ µBgJHmag〈γJIF ′M |J (1)
z |γJIFM〉, (21)

where the matrix element of J (1)
z can be calculated as

〈γJIF ′MF |J (1)
z |γJIFMF 〉 = (−1)F ′−MF +J+I+F+1

×
√

(2F ′ + 1)(2F + 1)J(J + 1)(2J + 1)

×
(

F ′ 1 F
−MF 0 MF

) {

F ′ 1 F
J I J

}

. (22)

In (21) C = F (F + 1)− I(I + 1)− J(J + 1), A and B are
hyperfine structure constants and gJ is the Landé factor.

Using the standard vector coupling technique [25], the
matrix elements of û(λ)

kq operators for electric and magnetic
multipole transitions can be written in terms of 3-j and
6-j symbols as

〈γ′J ′IF ′M ′
F |û(λ)

kq |γJIFMF 〉 = S(k)
qF ′F 〈γ′J ′||û(λ)

k ||γJ〉,
(23)
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where

S(k)
qF ′F = (−1)F ′−M ′

F +J′+I+F+k
√

(2F ′ + 1)(2F + 1)

×
(

F ′ k F
−M ′

F q MF

) {

J ′ F ′ I
F J k

}

. (24)

Then, the transition probability can be expressed as

aTotal
M ′

F ,MF
=

1
16π

[

1
∑

q=−1

|b(0)1q |2
∣

∣

∣〈γ′J ′||û(0)
1 ||γJ〉

∣

∣

∣

2

|S(1)
qM ′

F MF
|2

+
2

∑

q=−2

|b(1)2q |2
∣

∣

∣〈γ′J ′||û(1)
2 ||γJ〉

∣

∣

∣

2

|S(2)
qM ′

F MF
|2

+ 2Re

{

1
∑

q=−1

(b∗(0)1q b
(1)
2q )〈γ′J ′||û(0)

1 ||γJ〉〈γ′J ′||û(1)
2 ||γJ〉

× S(1)
qM ′

F MF
S(2)

qM ′
F MF

}]

, (25)

where S(k)
qM ′

F MF
denotes

S(k)
qM ′

F MF
=

∑

F ′,F

C∗γ′

M ′
F F ′S(k)

qF ′FC
γ
MF F . (26)

The electric-quadrupole admixture in mixed transition is
defined by

D =
AE2

ab

AM1
ab +AE2

ab

, (27)

where

Aab =
∑

M ′
F ,MF

aab(M ′
F →MF ). (28)

It is easy to show that definition (27) is equivalent to

D =
|〈γ′J ′||û(1)

2 ||γJ〉|2
|〈γ′J ′||û(0)

1 ||γJ〉|2 + |〈γ′J ′||û(1)
2 ||γJ〉|2

, (29)

As a final step one may express the relative tran-
sition probability ãTotal

M ′
F ,MF

, defined as ãTotal
M ′

F ,MF
=

aTotal
M ′

F ,MF
/(AM1

ab +AE2
ab ) according to

ãTotal
M ′

F ,MF
=

1
16π

[

(1 −D)|b(0)1q |2|S(1)
M ′

F MF
|2 +D|b(1)2q |2|S(2)

M ′
F MF

|2

+ 2
√

D(1 −D)(b∗(0)1q b
(1)
2q )S(1)

M ′
F MF

S(2)
M ′

F MF

]

. (30)

The relative intensities of Zeeman patterns observed in
experiment are directly proportional to the relative tran-
sition probabilities ãTotal

M ′
F ,MF

.

2P0
1/2

4S0
3/2

A 376 –14.9

B 0 –10.1

gJ 0.667 1.650

Table 4. Values of the hyperfine
structure constants A and B (in mK)
and Landé gJ factors used in our
computations (see Refs. [26,27]).

Analysis of equations (25) and (19) makes it possible to
determine the general features of the M1-E2 interference
effect.

• The interference can be observed only when various
components of the atomic line are separated as to
wavelength. This is a consequence of the following or-
thogonality property for the 3-j symbols

∑

M ′
F ,MF

(

F ′ 1 F
−M ′

F q MF

) (

F ′ 2 F
−M ′

F q MF

)

= 0. (31)

• The interference does not change the state of polariza-
tion of the emitted radiation for all the directions of
observation (see Tab. 2).

• The interference term, modifying the intensities of
Zeeman components, can be positive or negative. It has
different values for different components and changes
with the direction of observation. The interference
term changes its sign when observation is changed from
transverse to longitudinal, but its absolute value re-
mains the same (see Tab. 3).

4 The computer program

A direct observation of separate hfs Zeeman components is
practically unachievable for conditions under which the hfs
is barely resolved. What can be observed is an envelope of
partially overlapping lines. We assumed that the observed
contour is described by the following intensity distribution
function:

I(ν) = I0(ν) +
∑

i

Ii
1 + α2

1(ν − ν̃i)2 + α4
2(ν − ν̃i)4

, (32)

where I0(ν) describes the background noise, Ii is the in-
tensity of the ith Zeeman component directly proportional
to the transition probability (30), ν̃i = νi + ν0 is the po-
sition of the component on the frequency axis (ν0 shifts
the whole contour either left or right), and parameters α1,
α2 describe the shape of the line. The function (32) is a
convolution of Cauchy, Gauss and approximate Airy func-
tions [28,29]. The Cauchy and Gauss functions describe
the radiative and Doppler broadenings of the atomic line
whereas the Airy profile is connected with instrumental
broadening.

The first step in the computer analysis involves find-
ing the position and the relative intensities of all the indi-
vidual components. This procedure accepts the required
atomic data of the investigated line: the magnitude of
the external magnetic field Hmag, hyperfine structure con-
stants A and B, Landé gJ factors (see Tab. 4), and quan-
tum numbers I and J for the two energy levels involved.
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Fig. 2. Zeeman patterns of the 461.5 nm line at 5.0 kG
for σ, π and L-views. Black dots present microdensitometer
traces. Solid lines are the computer-generated best fits ob-
tained for D = 7.7%. At the bottom of each picture the “error”
curves present deviations between calculated and experimental
profiles.

The next procedure sorts all the components according
to the wave numbers and separates them into groups cor-
responding to π, σ and L views. Then the intensity dis-
tribution function (32) is employed to calculate the sum
of intensities at each point of the final pattern using esti-
mated values for the electric-quadrupole admixture D and
line profile coefficients α1, α2.

In the next step, the least-square-fitting procedure is
used. The simulated structure is fitted to the experimen-
tal curve recorded in digital form. The actual Fabry-Perot
pattern has a variable dispersion, especially near the cen-
ter of the fringe system, but the simulated structure is
calculated with a linear dispersion. In order to avoid diffi-
culty the experimental profile is linearized. Care is taken
to keep the area under the interferometric curve constant
in this procedure. After linearization the profile is nor-
malized. Then, by variation of D values and line shape
parameters, the simulated contour is fitted to the experi-
mental data. We used Marquardt’s algorithm [30] in this
procedure.

Fig. 3. Computer-generated contours for different values of
the electric-quadrupole admixture D. Solid lines are the curves
of the best fit obtained for D = 7.7%. The dotted and dashed
lines are calculated profiles for D = 10% and D = 0%, respec-
tively. Zeeman patterns were obtained for 5.0 kG magnetic
field. All contours were normalized to the intensity of the first
peaks maxima.

5 Results

The observations of the Zeeman effect were performed for
four field values: 2.7, 3.8, 5.0 and 6.2 kG and for longitudi-
nal and transverse directions of observation. As examples,
Figures 2 and 4 show the recorded Zeeman structures of
the line for two field values 5.0 and 6.2 kG. The observed
line contours were analyzed using the least-square-fitting
procedure described in Section 4. Black dots represent the
experimental results and the solid lines are the computer
best fits described by formula (32). The “error” curves at
the bottom of each picture present the differences between
the calculated and experimental contours.

We analyzed four or five interferometric orders for each
value of the magnetic field. Our studies show that more
precise results have been obtained for higher field values —
it is caused by richer structures of the spectra. Moreover,
more reliable results have been obtained from the analysis
of the spectra for the longitudinal direction of observation
(L-views). The reason for that can be explained by Fig-
ures 3 and 5. These figures present the computer simu-
lations of the Zeeman patterns for varying values of the
electric-quadrupole admixture D (simulated shapes were
normalized to the first peaks maxima). The presented fig-
ures show the sensitivity of the shape of the generated
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Fig. 4. Zeeman patterns of the 461.5 nm line at 6.2 kG for σ,
π and L-views. Black dots present microdensitometer traces.
Solid lines are the computer-generated best fits obtained for
D = 7.3%. At the bottom of each picture the “error” curves
present deviations between calculated and experimental pro-
files.

structure to the D parameter changes; it is apparent that
L-view is the most sensitive one.

The computer simulation yields D = 7.7% for the re-
sults presented in Figure 2 for 5.0 kG magnetic field and
D = 7.3% for the results presented in Figure 4 obtained
for 6.2 kG. All the obtained results for D varied in the
range of 6.4−8.4. The α1 parameter values obtained from
the fitting procedure varied from 0.30 cm−1 to 0.41 cm−1,
and the values of α2 varied in the range of 0.32−0.70 cm−1.

The weighted mean value from all our experimental
results for different magnetic fields and studied interfer-
ometric orders was determined to be D = (7.4 ± 0.4)%.
The error bar represents the standard deviation.

In Table 5 our result was compared with the experi-
mental results of other authors and with theoretical pre-
dictions. Our value for D is higher than the experimental
result D = (6.5 ± 0.5)% from [6], but not in disagree-
ment. Other experimental results obtained earlier are sig-
nificantly higher. There is also a large discrepancy between
the value obtained by us and HFR predictions. As fol-
lows from Table 5, a very good agreement was achieved in
semiempirical single-configuration calculations [32], where

Fig. 5. Computer-generated contours for different values of
the electric-quadrupole admixture D. Solid lines are the curves
of the best fit obtained for D = 7.3%. The dotted and dashed
lines are calculated profiles for D = 10% and D = 0%, respec-
tively. Zeeman patterns were obtained for 6.2 kG magnetic
field. All contours were normalized to the intensity of the first
peaks maxima.

Table 5. Experimental and theoretical results for percentage
admixture of E2 radiation in mixed 461.5 nm line of Bi I.

Experiment Theory Method of calculations

20a 10.1e Single configuration approximation

8 ÷ 9b 23f Multi-configurational HFR

10 ± 0.8c 7.3g Semiempirical

6.5 ± 0.5d

7.4 ± 0.4∗

a Reference [31]; b reference [14]; c reference [15]; d reference [6];
e reference [3]; f reference [4]; g reference [32]; ∗ present work.

the Landman and Lurio intermediate-coupling wave func-
tions [2] and experimental value for the radial integral sq

of r2 between single-electron states sq = 8.7ea2
0 from [8]

were used.

6 Conclusion

We reexamined the E2 admixture measurement for the
461.5 nm line of Bi I. We found a large discrepancy
between our value and the result predicted by multi-
configurational HFR theory. On the other hand, our ex-
perimental value is in very good agreement with the result
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of semiempirical calculations in the single-configuration
approximation. It shows that the situation in calcula-
tions of transition probabilities is very complex. In the
case of ground configuration of Bi I, the effect of config-
uration mixing is very weak, and limited inclusion into
calculations admixtures of several selected configurations
does not necessarily improve the agreement with experi-
ment, even if the calculated energy levels agree better with
observation.

This work was supported by the KBN Committee (Grant
127/E-335/S/2004).
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